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Abstract

A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent

neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spher-

ical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed

for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimen-

sional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities

of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source

problem is compared to the analytic solution to both the P1 equation and the full transport solution. A lattice problem

is used to test the method on a more challenging problem.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Riemann solvers are a class of numerical methods for solving time dependent hyperbolic systems of

equations. These extremely robust solvers were originally developed for fluid dynamics problems where

shocks may arise. Since then, they have been used on many different problems, including traffic flow,
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plasma simulations [1], and two-phase flow calculations for nuclear reactor systems [2]. Recently, Riemann

solvers have been applied to radiation hydrodynamics [3–5]. These calculations model the radiation trans-

port using a synthetic diffusion description with Eddington factors fixed from an external transport

calculation.

We have previously described in detail how to apply Riemann solvers to the spherical harmonics expan-
sion of the transport equation in one dimension [6,7]. Here we will present a brief summary of the one-

dimensional problem, then extend it to two dimensions. As will be described below, multidimensional

problems can be treated by using the one-dimensional numerical flux across each of the faces in a multi-

dimensional computation cell.
2. Spherical harmonics

One common approximation used to solve the transport equation is based on expanding the angular

flux w(X) in terms of the spherical harmonics Y m
l ðXÞ. This is most frequently done in one dimension;

here we will do a full three-dimensional expansion and then simplify to fewer dimensions. Since we are

mainly concerned with the treatment of the streaming operator, only absorption and isotropic scattering

are considered here. It is easy to add higher scattering moments [8,9] or more complicated scattering

processes.
2.1. The expansion

The spherical harmonic functions are defined as [10]
Y m
l ðl;uÞ ¼ ð�1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where lP 0 and 0 6 m 6 l. There is a slightly modified form for m < 0, but these terms are not needed here

because the angular flux is real. The spherical harmonics form a complete set of orthonormal basis func-

tions, and we can expand the angular flux as
wðx;XÞ ¼
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This expansion is exact, but in order to make practical use of it, the series must be truncated. The PN

approximation is based on the assumption that all wm
l ¼ 0 for l > N.

Various spherical harmonic moments of w can be interpreted as physical quantities. The w0
0 moment

is simply the density of particles multiplied by their speed v, the well-known scalar flux. The wm
1 terms

are related to the momentum of the particles, the neutron current, and the wm
2 terms are related to

pressure.
Expanding the three-dimensional Boltzmann transport equation yields
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for 0 6 l < 1 and �l 6 m 6 l, with
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Because w is real, we can use a property of spherical harmonics, namely
Y
m
l ¼ ð�1ÞmY �m

l ) w
m

l ðxÞ ¼ ð�1Þmw�m
l ; ð7Þ
to reduce the number of unknowns. With this we can eliminate all terms with m < 0 simply by using the

complex conjugate of the appropriate moment with a positive m.
Many problems are two-dimensional in nature and do not need the full treatment Eq. (3) can give. In a

two-dimensional system there is no change in any of the variables along a particular direction. Inspecting

Eq. (3) suggests the y dependence be dropped. This choice decouples the real and imaginary parts of the

equations, and we only need to solve for the real parts. This leaves us with
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for m 6¼ 0 and for m = 0 we have
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where we have used C�1
l ¼ E1

l and D�1
l ¼ F 1

l to eliminate the m = �1 terms from the m = 0 case.

2.2. The eigenstructure

In order to use the PN approximation with a Riemann solver, we need to determine the eigenstructure of
the system. One of the more commonly used Riemann solvers is a Roe-type Riemann solver. In a Roe-type

solver, a nonlinear system is linearized in a specific manner. Because the spherical harmonics system is lin-

ear, all of the properties of the linearized Roe matrix are automatically met by the Jacobian. The eigenstruc-

ture of the z Jacobian is particularly easy to determine analytically and will be shown here.

Inspecting Eq. (3), we see that each of the azimuthal (m) modes is decoupled from the other azi-

muthal modes. If we group the equations by identical values of m, the Jacobian is a block diagonal

matrix. The eigenstructure of each block is independent of the others. One block of the z Jacobian

looks like
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where each block contains the m + 1 6 l 6 N � 1 modes. If we multiply a vector of Y m
l �s by the Jacobian,

there results
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But this is practically the recursion relation Y m
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where l = cosh. For the last line to work as the recursion relation, we need
Y m
Nþ1ðl;uÞ ¼ 0. ð13Þ
The eigenvalues are just l�s from the solution of Eq. (13) for each 0 6 m 6 N. The right eigenvectors for

each of the m blocks are the spherical harmonics evaluated at these lk�s. The eigenvectors for the entire

Jacobian are just these eigenvectors for the m blocks padded with zeros. (The P1 eigenvectors are shown
in Eq. (16).) The value of u is immaterial; for fixed m as u varies the eigenvector is just multiplied by

the scalar eimu. Because Am
l�1 ¼ Bl

m, the Jacobian is symmetric, and the left eigenvectors are the same as

the right eigenvectors, and each is normalized such that rk Æ rk = 1. The special case of the A0
z block of

the Jacobian is the matrix describing the one-dimensional Legendre polynomial expansion of the transport

equation [6,11].

The eigenvalues are all real and in the range �1 < l < 1. Each eigenvalue is unique with one exception;

there can be multiple zero eigenvalues. For all odd N, these zeros only occur in the blocks with m > 0.

Some insight may be gained by looking at a specific example. The Jacobian in front of the z derivative
for the two-dimensional P1 approximation is
Az ¼
0
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As mentioned above, Az is symmetric. This means if we normalize each of the k right eigenvectors such

that
rk � rk ¼ 1; ð15Þ

they are also the left eigenvectors, so we have
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The corresponding eigenvalues of this matrix are
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The first and last eigenvectors represent particles (scalar flux) and momentum (current) traveling in the z

direction with speed �1=
ffiffiffi
3

p
. The middle eigenvector is simply a statement that the x current is not trans-

ported in the z direction.

For even N, there is also zero eigenvalue in the m = 0 block of the Jacobian. This eigenvector contains

particles (there is a Y 0
0 component), but because the wave speed associated with this wave is zero, these

particles do not move. It is this fact that causes the PN approximations with even N to give unusual results;

the even N approximations have historically been avoided because of this [9].

The eigensystems vary in size depending on the order of the PN approximation. In two dimensions, the

number of spherical harmonic moments is (N2 + 3N)/2 + 1, so for P1, P9, and P15 there are 3, 55, and 136

moments, respectively. Because of the large size of the systems, MATLAB is used in practice to construct

each of the Jacobians, and the eigenstructure is determined numerically once before the simulation begins.
3. The Riemann solver

After averaging over a spatial cell, our system of equations, Eqs. (8) and (9), can be written in vector

form as
oui;j

ot
þ Axuiþ1=2;j � Axui�1=2;j

Dx
þ Azui;jþ1=2 � Azui;j�1=2

Dz
¼ Si;j; ð18Þ
where ui,j is a vector of the cell averages of the wm
l moments in the cell centered at (xi,zj) at time t, Si,j

contains the scattering terms, Axui±1/2,j is the flux of each the moments in the x direction, and similarly

for the z direction. (The Riemann solver community simply calls Au the flux; we already have the angular

flux and the scalar flux, and will understand ‘‘flux’’ without an adjective to mean this rate of flow of a

state u across an interface.) The fluxes at the cell interfaces, Axui±1/2,j and Azui,j±1/2, must be computed
somehow.

The Roe-type Riemann solver provides a very nice scheme for calculating solutions to time dependent

problems in one dimension. But once a one-dimensional Riemann solver is constructed for a particular sys-

tem of equations, it is easy to extend it to multiple dimensions. The simplest multidimensional Riemann

solvers treat each of the directions individually, as if it were a set of one-dimensional problems [12]. This

method is the one used here for the two-dimensional calculations and can be extended to three-dimensional

calculations as well.

3.1. A one-dimensional Riemann solver

Consider a generic system of linear conservation equations describing a physical system,
ou

ot
þ oAu

ox
¼ SðuÞ; ð19Þ
where u(x, t) is a vector of state variables, such as the spherical harmonic moments wm
l , Au is called the flux

of u, and describes how the state variables change with variations in space, S(u) is a source vector, with

terms that may or may not depend on u, and A contains the coefficients from one of the terms in Eq.

(3) or Eqs. (8) and (9). The source terms can include local terms such as collisions, body forces and external

sources.

Riemann solvers give us a way to compute the solution of equations similar to Eq. (19). The numerical

approximation to Eq. (19) begins by dividing space into cells with edges at xi+1/2 and uniform widths Dx,
although this restriction can be relaxed. Integrating u(x, t) over a spatial cell and dividing by Dx, we get

space-averaged data in cell i at time t,
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uiðtÞ ¼
1

Dx

Z xiþ1=2

xi�1=2

uðx; tÞ dx. ð20Þ
Integrating Eq. (19) over space cell i yields
oui

ot
þ Auiþ1=2 � Aui�1=2

Dx
¼ Si; ð21Þ
where ui±1/2 = u(xi±1/2, t). Riemann solvers give us a means to determine the fluxes Aui±1/2 at both the inte-

rior cell edges and the system boundaries. This clearly gives us a conservative numerical method.
3.1.1. A simplified problem to find the numerical fluxes

We need a way to approximate Aui±1/2 between cell i and i ± 1. Riemann solvers use the solution, ~u, to a

simplified hyperbolic problem to estimate the flux Aui±1/2 at the cell boundaries. The solution of a hyperbolic

problem with piecewise constant initial data is known as the Riemann problem; it is from this that Riemann

solvers take their name. This approximate solution is computed using the nearby cell averages of u.

Consider the generic situation of an interface at x = 0, with discontinuous initial data ur and u‘ to the

right and left of this interface, and consider ~u satisfying
o~u

ot
þ A

o~u

ox
¼ 0 ð22Þ
with the initial condition
~uðx; 0Þ ¼
u‘ if x < 0;

ur if x > 0.

�
ð23Þ
Solving this system of equations [12–14,6,11,7,1], we get A~uð0; tÞ as
A~uð0; tÞ ¼
X
kk>0

kk lk � u‘ð Þrk þ
X
kk<0

kk lk � urð Þrk. ð24Þ
Eq. (24) shows why Riemann solvers are so robust; they only use upwind information. We can also rewrite

Eq. (24), in the form commonly used by the Riemann solver community, as
A~uð0; tÞ ¼ 1

2
ðAu‘ þ AurÞ �

1

2

X
k

rkjkkj lk � Duð Þ; ð25Þ
where Du = ur � u‘. If we now, at each interface i ± 1/2, somehow relate u‘ and ur to the cell states uj for j

near i, we can approximate Eq. (21) by using A~u to estimate Aui±1/2, resulting in a spatially discretized sys-

tem of equations. For example, the most natural choice at interface i + 1/2 would be u‘ = ui and ur = ui+1;

Eq. (25) can then be seen as a centered difference with some dissipation added to make the scheme

upwinded.
3.1.2. A high-resolution scheme

The flux based on u‘ = ui and ur = ui+1 would lead to a method that is only first-order in space. It is pos-
sible to modify this Roe-type Riemann solver to be higher order in space [12], making it a high-resolution

scheme. The basic premise is to compute u‘ and ur at each interface by using linear interpolation within the

cell, respectively, to the left, and to the right, of the interface. In doing so, a slope must be computed for

each state variable in each cell, using only nearby cell values; if this slope is computed as only a linear func-

tion of the cell state values the method can still only be first-order if artificial oscillations are prevented [1].

Therefore, we must use some nonlinear method to calculate the slope, and we must also do this carefully so

that no new local minima or maxima are created.
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One slope reconstruction method was first proposed by van Leer [14]. On a uniform mesh, each of the

slopes are first calculated to the left and the right of cell i,
m� ¼ ui � ui�1

Dx
; ð26Þ

mþ ¼ uiþ1 � ui
Dx

; ð27Þ
where u is one of the state variables in the vector u; note that each quantity is interpolated independently. If

these slopes have different signs, cell i is a local extremum, and we set mi = 0. Otherwise, we calculate the

harmonic mean of the neighboring slopes,
mi ¼
2mþm�

mþ þ m�
. ð28Þ
Van Leer also suggested a clever way of rewriting the harmonic mean to efficiently incorporate the logic

deciding if the slopes have the same sign into the formula:
mi ¼
jm�jmþ þ m�jmþj

jmþj þ jm�j
. ð29Þ
On some computer systems, Eq. (29) is much faster than Eq. (28). The slopes mi are then used to cal-

culate a new vector u at the cell interfaces for use in Eq. (24) (or Eq. (25)). Each term in u is calculated

as
ui�1=2 ¼ ui �
Dx
2
mi; ð30Þ
depending on whether u is needed at the left or right cell interface. Thus, at interface i + 1/2 Eq. (30)

gives us u‘ = ui + miDx/2 and ur = ui+1 � mi+1Dx/2, where mi is a vector of slopes with Eq. (29) for each

moment.
3.2. A simple multidimensional Riemann solver

Now the fluxes Axui±1/2,j and Azui,j±1/2 can each be computed using the flux derived from the one-dimen-

sional analysis resulting in Eq. (25), and the eigenstructure used in the correction term is evaluated using the

one-dimensional problem implied by each term in Eq. (18). The fluxes are
Axuiþ1=2;j ¼ Ax
ui;j þ uiþ1;j

2
� 1

2

X
k

rx;kjkx;kjlx;k

" #
uiþ1;j � ui;j
� �

ð31Þ
and
Azui;jþ1=2 ¼ Az
ui;j þ ui;jþ1

2
� 1

2

X
k

rz;kjkz;kjlz;k

" #
ui;jþ1 � ui;j
� �

. ð32Þ
The interpolation for the higher order method is only done in the direction normal to the cell face; any con-

servative interpolation scheme will preserve the face average in the tangent direction. This method can also

be extended to non-uniform grids, but this is not done here for simplicity.
Because the PN equations are linear, the Roe matrix (and its eigenstructure) is constant. Much of Eqs.

(31) and (32) can therefore be precomputed. Again, some insight may be gained by looking at the specific

example of P1. Using Eq. (16) allows us to build the matrix used in the correction term in Eq. (32) for the

Jacobian Az,
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X
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In this case the correction adds some dissipation equal to the difference between the two neighboring cell
states times the absolute value of the eigenvalue. Because there is no x momentum transported in the z

direction, the is no dissipation for that term.

The time integration is handled explicitly, and a second-order Runge–Kutta method [15] was used to

allow larger time steps than are allowed by a simple forward Euler scheme. The source term, Si,j(ui,j) in

Eq. (18), is evaluated at the beginning of the time step using the cell-centered ui,j, so for the radiation trans-

port equation
Si;j ¼

ðRs � RtÞw0
0ðxi;jÞ

�Rtw
0
1ðxi;jÞ

. . .

�Rtw
m
l ðxi;jÞ

. . .

�Rtw
m
N ðxi;jÞ

2
6666666664

3
7777777775
. ð34Þ
3.3. Extra dissipation

Riemann solvers sometimes have problems with waves that have zero speed. The reason why is evident

in Eq. (33); there are some terms that do not have any dissipation. The lack of dissipation can cause some

unphysical solutions to develop. There are several fixes to this problem in the Riemann solver community,

but they tend to be either problem-specific, like Powell�s $ Æ B = 0 fix for the multidimensional magnetohy-

drodynamics equations [16], or they apply to nonlinear systems where an eigenvalue passes through zero,

like the entropy fix [13,1]. Because our system is linear, a specific fix is proposed: If we replace the zero

eigenvalue in Eq. (33) with 1=
ffiffiffi
3

p
, we get
X
k

rkjkkjlk ¼

1ffiffi
3

p 0 0

0 1ffiffi
3

p 0

0 0 1ffiffi
3

p

2
664

3
775. ð35Þ
This essentially changes the method from a purely Roe-type Riemann solver to one where the terms with

non-zero eigenvalues are treated with a Roe-type solver and the ones with zero eigenvalues are updated

using a Lax–Friedrichs solver [1,17]. This change does not increase the order of the error of the method;

we are only adding on another error of the same size that acts like a diffusive term. It is important to note

that this fix is only used to eliminate some unphysical aspects of the numerical solutions; even the solutions

obtained without this fix are excellent.

We can extend this idea to higher order PN approximations, where the zero eigenvalues are replaced with
the smallest non-zero eigenvalue.
4. Results

The first problem is the simplest: a pulsed line source. This simple problem highlights the key features of

the Riemann solver and shows some interesting characteristics of the spherical harmonics approximation.
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This problem clearly shows the importance of the high-resolution scheme. The second problem is loosely

based on a lattice core. This problem shows that there are significant deficiencies in using just the P1

approximation.
4.1. The line source in two dimensions

The most basic of all time dependent problems is a Green�s function problem, in which a pulse of par-

ticles is emitted from a line in an infinite medium. In a linear system, solutions to all other time dependent

problems are just superpositions of such Green�s functions. Only purely scattering material is considered

here; in an infinite homogeneous medium absorption can be scaled out by setting w ¼ w0e�Rat, where w 0

is the pure scattering solution.

The scalar flux can be solved for analytically in a few special cases. In a vacuum, where Rt = 0, the P1

equations, written in cylindrical coordinates, can be reduced to a wave equation, namely
o
2/

o2t
þ 1

3r
o

or
r
o/
or

¼ 0. ð36Þ
This can be solved using a Hankel transform [18] yielding
/ðr; tÞ ¼ 3/0

2p
dðt �
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3

p
rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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rÞ

ðt2 � 3r2Þ3=2

 !
; ð37Þ
where h is the unit step function. This is a very surprising result; the scalar flux is composed of two parts, the

first is a delta function pulse of uncollided particles, but the other part is negative! No matter how strong

the scattering term is, it is always possible to find a t small enough such that the scattering is negligible, and

the scalar flux will then be negative. For short times, not many of the neutrons have undergone scattering

yet. The distribution is not linearly anisotropic (all the neutrons are moving away from the line source and

none toward it), and the P1 equations are not a good approximation to the physical system under these

conditions. This negative scalar flux is a manifestation of this breakdown of the P1 equations. Similar

expressions can also be found for higher orders of the spherical harmonic expansion.
To test the two-dimensional Riemann solver, this Greens function problem was solved using the second-

order-in-space Riemann solver on a Cartesian x–z grid. The time step in the second-order Runge–Kutta

time integration used here was chosen small enough such that the time discretization errors were extremely

small. The exact solution is of course just a function of radius r, but this symmetry was not exploited, and

the second-order scheme produced very good symmetry despite the Cartesian grid. For comparison, the

transport theory scalar flux was computed using Ganapol�s solution [19–21] and various orders of spherical

harmonics. Because of the radial symmetry, only the solution along the x-axis is shown in the plots.

For the first problem Rt = Rs = 0, so that we can compare to Eq. (37). Fig. 1 shows the analytic and
numerical solution to this problem. Even though the P1 equations do not adequately model the physical

system, we can see that the Riemann solver accurately estimates the analytic P1 solution to this difficult

problem. Riemann solvers were designed to handle shocks well; we see here that they also deal with the

multiple singularities in Eq. (37) extraordinarily well. As the resolution of the spatial grid is refined, the

solution even more closely approximates the analytic solution.

The scattering cross-section is set to Rs = 1 cm�1 for the remainder of the line source problems. The sca-

lar flux at 1 and 10 s after the pulse from the line source is shown in Figs. 2 and 3. Early on (at about one

mean scattering time), none of the PN results is a good approximation to the transport solution; they all
contain significant negative components. As time progresses, however, after most of the neutrons have

undergone several scattering collisions, the spherical harmonics equations give much better approximations

to the true solution. It is quite remarkable that the Riemann solver calculated the solution accurately
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Fig. 1. The scalar flux from a line source in a vacuum calculated with P1 analytically and numerically at one second after the pulse. The

delta function is located at radius r ¼ 1=
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Fig. 2. The scalar flux from a line source with Rs = 1 cm�1 calculated numerically with P1, P3, and P9 expansions one second after the

pulse. These are compared to Ganapol�s analytic solution. Note that the flux for the PN closures is negative.
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enough early (in the non-physical regime) to allow the solutions at later times to be very good. It should be

noted that in the transport solution there is a shell of uncollided particles moving away from the line source

with speed v = 1. The pulse of neutrons at the wave front, which can be seen in Fig. 2, represents a singu-

larity in the analytic solution to the transport problem. This wave front dies away at later times.

In two dimensions the number of unknowns increases proportionally to Dx�2 as Dx is decreased, and the

high-resolution scheme becomes absolutely vital in order to resolve features of the solutions without need-

ing an extremely fine mesh. The high-resolution calculation shows the expected structure of pulses moving
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Fig. 3. The scalar flux from a line source with Rs = 1 cm�1 calculated numerically with P1, P3, P9 expansions 10 s after the pulse. These

are compared to Ganapol�s analytic solution.
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away from the center, while the first-order calculation shows none of this. Fig. 4 shows the same pulsed line

source calculation as above, with 50 cells per centimeter. The ring structure of the PN solution is clear in the

high-resolution solution and completely absent in the first-order solution. Even if the number of cells is
doubled to 100 per centimeter, the first-order solution is not as good the high-resolution solution with

50 cells per centimeter.
Fig. 4. The scalar flux from a line source with Rs = 1 cm�1 from a P15 calculation. The ring structure of the PN solution is clear in the

high-resolution solution and completely absent in the first-order solution. (a) High res., 50 cells/cm, (b) low res., 50 cells/cm.
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4.2. A lattice problem

This problem is a checkerboard of highly scattering and highly absorbing regions loosely based on a

small part of a lattice core. The system is seven centimeters wide. The bulk of the lattice is composed of

a scattering material with Rt = Rs = 1 cm�1. There are 11 absorbing regions where Rt = Ra = 10 cm�1. At
time zero, a source of strength one is turned on in the central region of the system. All neutrons travel

at v = 1 cm/s, and the problem is surrounded on all sides by vacuum boundaries.

Fig. 5 shows the scalar flux 3.2 s after the source is turned on. For comparison with the PN calculations,

this problem was also computed using two different methods. First, a diffusion calculation with a simplified

Levermore–Pomraning flux limiter was done using the ALEGRA code [22] which used the same grid as the

PN calculations. Second, an implicit Monte Carlo calculation was done using the KULL IMC package [23].

The simulation consisted of 36 million particles in half the problem domain, with a reflective boundary on

the center line.
The P15 calculation shows distinct shadows behind the absorbers in addition to well-defined beams of

neutrons leaking between the corners of the absorbing regions; this agrees very well with the Monte Carlo
Fig. 5. The scalar flux calculated in the lattice problem 3.2 s after the source was turned on. The gray scale map is proportional to

log10/ and limited to seven orders of magnitude. (a) P1, (b) P15, (c) flux limited diffusion, and (d) implicit Monte Carlo.
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simulation, especially for scalar fluxes above 10�4 particles/cm2 s. The P1 calculation is much too diffuse

throughout the simulation. The scalar flux computed using P1 has an artificial wave front of neutrons trav-

eling at speed v ¼ 1=
ffiffiffi
3

p
cm=s. This is due to the fact that in P1, the neutron waves travel only at this speed.

In the P15 calculation, the neutron waves can travel at many more speeds, eliminating these non-physical

wave fronts. The flux limited diffusion solution captures the wave front very well (Fig. 5(c)), but fails to
capture the beams leaking between the absorbers that can be seen in the P15 and Monte Carlo calculations.

In regions of low flux, Fig. 5(b) shows some oscillations in the flux on the order of / = 10�6 particles/cm2 s;

these oscillations are related to the ones in the line source problem (Fig. 2).
5. Conclusions

We have developed a numerical method to solve the time dependent spherical harmonics equations in
two-dimensions using a high-order Riemann solver. The method is based on exactly treating the streaming

terms from the spherical harmonics equations in one-dimension, and using these results to compute the flux

of state across computational cells. The use of a harmonic-mean slope-limiter allows the method to be sec-

ond-order in space; a second-order explicit Runge–Kutta time integration is used. The method deals with

even singular solutions quite robustly.

The method has been compared to exact Greens functions of the P1 equations and benchmark transport

theory solutions, as a function of spherical harmonics order. These results show that the time dependent

spherical harmonics equations can be successfully solved with a Riemann solver, and illustrate the inade-
quacy of the lowest order PN approximations for time dependent transport simulations: particles in the

P1 approximation move only at the speed 1=
ffiffiffi
3

p
, which is rather limited compared to the whole range

[0,1] of physical possibility. This is of course a reflection of the limited angular resolution of P1 theory –

the two-dimensional P15 results contain eight separate speeds, reflecting their higher angular resolution. A

comparison of the results of time dependent P1 and P15 theory in the alternating scatterers and absorbers

of Fig. 5 shows the improved spatial resolution of the scalar flux that comes from having greater angular

resolution.
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